

Prepared for:

Department of the Air Force

Headquarters Standard Systems Group (SSG)

Maxwell Air Force Base – Gunter Annex

Montgomery, Alabama

Contract Number: F01620-96-D-0004

Document Number: PROJ-2000-GCSSAF-0371

Version: 2.2

Date: 01/09/01

GCSS-AF

Global Combat Support System - Air Force

Application Framework
Developer’s Guide

Lockheed Martin Federal Systems

1801 State Route 17C

Owego, NY 13827-3998

GCSS-AF Application Framework Developer’s Guide, Version 2.3
Document No. PROJ-2000-GCSSAF-0371

i

DOCUMENT CHANGE HISTORY

VERSION CHANGE DESCRIPTION (REQUIRED FOR CHANGES
AFFECTING TPM, REQUIREMENTS, CONFIGURATION, COST &

SCHEDULE)

NO. APPROVAL DATE CHANGE
DOC.

SECTION NARRATIVE (OF ITEMS AFFECTED)

1.0

Draft
IPT 07/20/00

INITIAL SEPARATION FROM FIRST
DEVELOPER’S GUIDE

1.1

Draft

 7/28/00 GENERAL CLEAN-UP: SPELLING OUT
ACRONYMS, CLARIFYING TEXT, ETC.

2.0 IPT 10/31/00 UPDATE RESULTS BASED ON
GENERAL REVIEW

2.1 11/07/00 UPDATE FOR NON-DEVELOPMENTAL
ITEM INTEGRATION AND CLARIFYING
TEXT

2.2 PORTAL
TEAM

1/09/01 ATTACH AIR FORCE PORTAL
INFORMATION

2.3 PORTAL
UPDATE

2/9/01 REVISE AIR FORCE PORTAL
GUIDANCE INFORMATION

GCSS-AF Application Framework Developer’s Guide, Version 2.3
Document No. PROJ-2000-GCSSAF-0371

ii

TABLE OF CONTENTS

1. INTRODUCTION .. 6
1.1 PURPOSE.. 6

1.1.1 Overview ... 6
1.1.2 Purpose of this Document ... 8

1.2 OBJECTIVES .. 8
1.3 SCOPE.. 8

2. REFERENCE DOCUMENTS .. 10
2.1 GOVERNMENT DOCUMENTS ... 10
2.2 APPLICABLE STANDARDS ... 10
2.3 CONTRACTOR DOCUMENTS.. 10
2.4 PRODUCT DOCUMENTS ... 11
2.5 GENERAL INFORMATION TECHNOLOGY... 11

3. GCSS-AF ARCHITECTURE ... 12
3.1 REFERENCE ARCHITECTURE OVERVIEW... 12

3.1.1 Integration Framework (IF).. 13
3.1.2 Application Framework ... 14

4. GCSS-AF SPIRAL LIFECYCLE PHASES ... 15
4.1 BUSINESS MODEL ... 17
4.2 ANALYSIS MODEL ... 18
4.3 DESIGN MODEL .. 18

4.3.1 Introduction .. 19
4.3.2 GCSS-AF Design Requirements.. 19

4.3.2.1 Design Modeling of Business Components.. 19
4.3.2.2 GCSS-AF Architecture Requirements... 20

4.4 IMPLEMENTATION MODEL ... 20
4.4.1 Introduction .. 21
4.4.2 What is Provided by the Integration Framework .. 21

GCSS-AF Application Framework Developer’s Guide, Version 2.3
Document No. PROJ-2000-GCSSAF-0371

iii

4.5 DEPLOYMENT MODEL .. 22
4.5.1 Introduction .. 22
4.5.2 Deployment patterns ... 22

5. APPLICATION FRAMEWORK STANDARDS .. 23
5.1 THE OPEN APPLICATIONS GROUP (OAG) ... 23

5.1.1 The Open Applications Group Integration Specification (OAGIS)..................................... 23

6. COMPONENTIZATION .. 26
6.1 COMPONENT DEFINITION ... 26
6.2 COMPONENT PROPERTIES/ATTRIBUTES ... 28
6.3 COMPONENT BASED DEVELOPMENT PROCESS.. 30

7. USE OF THE INTEGRATION FRAMEWORK .. 32
7.1 APPLICATION FRAMEWORK DEVELOPMENTAL COMPONENTS.. 32
7.2 APPLICATION FRAMEWORK NON-DEVELOPMENTAL COMPONENTS (COTS, GOTS, AND LEGACY
SYSTEMS) ... 32

8. APPLICATION VALIDATION AND INTEGRATION ... 35
8.1 GCSS-AF COMPLIANCE.. 35

9. RECOMMENDED APPLICATION DEVELOPER TOOLS ... 36
9.1 INTEGRATED DEVELOPMENT ENVIRONMENTS .. 36

9.1.1 Visual Age for Java... 36
9.1.2 Visual Cafe .. 36

9.2 MODELING TOOLS .. 36
9.2.1 Unified Modeling Language ... 36

9.2.1.1 Rational Rose.. 37
9.2.1.2 GCSS-AF Systems Solution UML Model.. 37

9.2.2 Data Modeling .. 37
9.2.2.1 IDEF1X... 37

9.3 CLASS LIBRARIES / JAR F ILES ... 37
9.4 CODE TEMPLATES BASE CLASSES AND HELPER CLASSES ... 38

10. FUTURE DIRECTION... 39
10.1 CONCEPT .. 39
10.2 IMPLEMENTATION ... 39

GCSS-AF Application Framework Developer’s Guide, Version 2.3
Document No. PROJ-2000-GCSSAF-0371

iv

LIST OF FIGURES

FIGURE 1 GCSS-AF DOCUMENT AND MODEL INTER-RELATIONSHIPS.. 7

FIGURE 2 - GCSS-AF REFERENCE ARCHITECTURE ... 12

FIGURE 3 - APPLICATION DEVELOPER AND INTEGRATOR ROLES ... 16

FIGURE 4 OAG COMPONENTIZED BUSINESS PROCESS ... 24

FIGURE 5 OAGIS INTEGRATION SCENARIO... 25

FIGURE 6 - COMPONENT DEVELOPMENT SIMPLIFIED FLOW ... 31

FIGURE 7 - LEGACY INTERFACE AND WRAPPING.. 34

LIST OF TABLES

TABLE 1 - WRAPPING ENHANCEMENTS ... 33

GCSS-AF Application Framework Developer’s Guide, Version 2.3
Document No. PROJ-2000-GCSSAF-0371

v

This Page Intentionally Left Blank

GCSS-AF Application Framework Developer’s Guide, Version 2.3
Document No. PROJ-2000-GCSSAF-0371

6

1. Introduction
GCSS-AF provides a component-based Reference Architecture Framework that serves
as the Integration and Application Framework Layers for GCSS-AF functional
capabilities consistent with the Defense Information Infrastructure Common Operating
Environment (DII COE), the Joint Technical Architecture - Air Force (JTA-AF), and
based on commercial open standards. The GCSS-AF Reference Architecture
Framework also provides common interfaces for those functions that either directly or
indirectly support Command and Control (C2) or share information with C2 Systems.

It is assumed that the reader is cognizant of Object Oriented Analysis and Design
methods, the Unified Modeling Language (UML), Open Applications Group (OAG)
concepts and specifications, Object Management Group (OMG) concepts and
specifications, and GCSS-AF Requirements Specifications. Specific reference
documents are provided in Section 2.

1.1 Purpose

1.1.1 Overview
Application Developers associated with GCSS-AF will be performing development in a
new environment with new processes, techniques, and constraints. Guidance is
needed to understand the overall integration environment. This document is one of an
interrelated set of four primary sources of information for developing applications within
GCSS-AF:

A. Global Combat Support System - Air Force (GCSS-AF) Architecture Overview
and Description

B. Global Combat Support System - Air Force (GCSS-AF) Application Framework
Developer’s Guide

C. Global Combat Support System - Air Force (GCSS-AF) Guide to Developing with
the GCSS-AF Integration Framework

D. Global Combat Support System - Air Force (GCSS-AF) Systems Solutions UML
Model

In addition, there should be a Developer’s Guide unique to the Business Area under
development. The document and model interrelationships are depicted in Figure 1.

GCSS-AF Application Framework Developer’s Guide, Version 2.3
Document No. PROJ-2000-GCSSAF-0371

7

GCSS-AF Architecture
Overview and Description

Guide to Developing
with the GCSS-AF

Integration Framework

GCSS-AF Application
Framework

Developer’s Guide

GCSS-AF
Systems Solutions

UMLModel

GCSS-AF
Application-Unique
Developer’s Guide

Figure 1 GCSS-AF Document and Model Inter-relationships

For the Application Developer to obtain a complete understanding of the definitions,
concepts and processes, the information above should be read/used in the order above
(A through C with references to D, as necessary) and sequentially within each
document to build a complete understanding of the development methodology.

In addition, the Application Developer should review the following documents to
understand the overall GCSS-AF Requirements as well as the specific Integration
Framework requirements:

E. Global Combat Support Systems – Air Force System Requirements Specification

F. Global Combat Support System - Air Force (GCSS-AF) Integration Framework
Enterprise Systems Management (ESM) Requirements Subsystem Specification

G. Global Combat Support System - Air Force (GCSS-AF) Integration Framework
Security Requirements Subsystem Specification

GCSS-AF Application Framework Developer’s Guide, Version 2.3
Document No. PROJ-2000-GCSSAF-0371

8

H. Global Combat Support System - Air Force (GCSS-AF) Integration Framework
Data Warehouse Services Requirements Subsystem Specification

1.1.2 Purpose of this Document
The intent of the GCSS-AF Application Framework Developer’s Guide is to provide a
prospective application developer with the information that is necessary to implement an
application that is consistent with the concepts upon which GCSS-AF is based and is
GCSS-AF compliant. As depicted in Figure 1 GCSS-AF Document and Model Inter-
relationships, this document is intended to be supplemented by Application Unique
Developer’s Guides that provide program-specific guidance.

The User Interface facility, or presentation layer, of GCSS-AF as of 1/3/2001 has been
designated to be the Air Force Portal (AFP). The current AFP is based on a Corona
demonstration portal, and is designated AFP 1.1. To learn how to add content to this
portal, visit the web site http://factory.plumtree.com/. In the second half of 2001 Air
Force Portal Version 3.0 will be deployed base on a competitively selected commercial
product. At that time there will be embedded updates to the GCSS-AF Developer's
Guides completed to incorporate the User Interface Facility, Air Force Portal into the
GCSS-AF Developer's Guides.

This document is not intended to provide step by step guidance on how applications are
to be designed and developed. An Application Developer shall be responsible for
utilizing their development processes and tools for the work that they do. However,
there are several factors related to GCSS-AF that will impact the developer’s work. In
addition, the Guide to Developing with the GCSS-AF Integration Framework provides
guidance to an application developer concerning the use of the Integration Framework.

There are a number of items that are accessible on the GCSS-AF Program Web page
at Gunter Air Force Base (AFB) that provide insight into the overall goal of the GCSS-
AF Architecture. These items include released documents and scheduled meeting
information.

1.2 Objectives
The GCSS-AF Application Framework Developer’s Guide provides the developers of
the business components, which are elements of an application, with the pertinent
information, or pointers to the pertinent information, that is necessary to develop and
integrate business components that are compliant with the GCSS-AF Reference
Architecture. This information includes a description of how newly developed
components are validated and integrated into the architecture, as well as how GCSS-AF
impacts application development.

1.3 Scope

GCSS-AF Application Framework Developer’s Guide, Version 2.3
Document No. PROJ-2000-GCSSAF-0371

9

This document is composed of the following sections:

Section 1: This section provides an Introduction, Purpose and Scope of this
 document.

Section 2: This section contains the lists of Reference Documents.

Section 3: This section contains an overview description of the GCSS-AF
Architecture, including a Systems View of the Integration and Application
Framework layers.

Section 4: This section describes the GCSS-AF Spiral Lifecycle Phases as depicted
in the UML Model and maps these phases to the various Developer and
Integrator Roles.

Section 5: This section describes standards applicable to application development. It
describes the OAG and its standards from an integration perspective.

Section 6: This section describes componentization and introduces the concept of
component based development.

Section 7: This section provides a brief description of the Integration Framework and
its applicability to GCSS-AF application development. It also describes
approaches for integrating non-developmental items with the Integration
Framework.

Section 8: This section provides a brief description of Application Validation and
Integration into GCSS-AF. This section also provides a brief description of
compliance.

Section 9: This section describes the recommended development tools for
application development within GCSS-AF.

Section 10: This section depicts the future direction of GCSS-AF and the lifecycle for
model and software artifacts.

For a list of Acronyms and Glossary of Terms, reference the GCSS-AF Developer’s
Guide – Architecture Dictionary and Acronyms; GCSS-REPORT-1999-0100.

GCSS-AF Application Framework Developer’s Guide, Version 2.3
Document No. PROJ-2000-GCSSAF-0371

10

2. Reference Documents
The documents in this section are not all explicitly referenced in this document.
However, it is important to review and use these documents as they provide pre-
requisite information relevant to understanding the overall GCSS-AF.

2.1 Government Documents

• C4ISR Architecture Framework; Version 2.0; 18 December 1997

• Defense Information Infrastructure (DII) Common Operating Environment (COE),
Developer Documentation Requirements; Version 2.0; 23 January 1998

• Defense Information Infrastructure (DII) Common Operating Environment (COE),
How to Segment Guide.

• Defense Information Infrastructure (DII) Common Operating Environment (COE),
Integration and Runtime Specification (I&RTS); Version 4.0; October 1999

• Defense Information Infrastructure (DII) Common Operating Environment (COE),
Office Automation Software Requirements Specification (SRS); V3.3; 11 January
1998

• Defense Information Infrastructure (DII) Common Operating Environment (COE),
Security Software Requirements Specification (SRS); Version 4.0; 20 October 1998

• Defense Information Infrastructure (DII) Common Operating Environment (COE),
Software Quality Compliance Plan.

• Defense Information Infrastructure (DII) Common Operating Environment (COE)
User Interface Specifications v 3.0 (incl Style Requirements of DII Compliance as
Appendix I); 8 March 1998

• Department of Defense (DoD) Joint Technical Architecture; Version 3.0; 15
November 1999

2.2 Applicable Standards

• Open Applications Group Common Middleware API Specification (OAMAS),
Release 1.0

• Open Applications Group Integration Specification (OAGIS), Release 6.2

2.3 Contractor Documents

• Global Combat Support System - Air Force (GCSS-AF) Architecture Overview and
Description GCSS-REPORT-1997-0010.

GCSS-AF Application Framework Developer’s Guide, Version 2.3
Document No. PROJ-2000-GCSSAF-0371

11

• Global Combat Support System - Air Force (GCSS-AF) Guide to Developing with the
GCSS-AF Integration Framework, GCSS-REPORT-1997-0011.

• Global Combat Support System - Air Force (GCSS-AF) Systems Solutions UML
Model

• Global Combat Support System - Air Force (GCSS-AF) System Requirements
Specification; GCSS-REQ-1997-0001.

• Global Combat Support System - Air Force (GCSS-AF) Integration Framework
Enterprise Systems Management (ESM) Requirements Subsystem Specification,
GCSS-SPEC-1999-0110.

• Global Combat Support System - Air Force (GCSS-AF) Integration Framework
Security Requirements Subsystem Specification, GCSS-SPEC-1999-0111.

• Global Combat Support System - Air Force (GCSS-AF) Integration Framework Data
Warehouse Services Requirements Subsystem Specification, GCSS-SPEC-1999-
0112.

• Global Combat Support System - Air Force (GCSS-AF) Developer’s Guide –
Architecture Dictionary and Acronyms; GCSS-REPORT-1999-0100.

2.4 Product Documents
• Unified Modeling Language (UML), Rational Software Corporation,

http://www.rational.com/uml/resources/index.jtmpl

2.5 General Information Technology
• Component Software : Beyond Object-Oriented Programming by Clemens Szyperski

(ISBN: 0201178885

• The Unified Software Development Process by Ivar Jacobson, Grady Booch, and
James Rumbaugh (ISBN: 0201571692)

•

GCSS-AF Application Framework Developer’s Guide, Version 2.3
Document No. PROJ-2000-GCSSAF-0371

12

3. GCSS-AF Architecture

3.1 Reference Architecture Overview
The Layered System View of the Reference Architecture Model, shown in Figure 2 -
GCSS-AF Reference Architecture, is defined to support distributed component-based
applications developed for a distributed environment. This architecture also provides a
structure that will enable interfacing with the monolithic applications that exist as legacy
systems as well as legacy client-server applications. Each layer of the Reference
Architecture is built using capabilities from the layers below it as needed.

Figure 2 - GCSS-AF Reference Architecture

The GCSS-AF Reference Architecture is composed of 5 layers grouped into two major
frameworks. The Integration Framework supplies the facilities and services that are
utilized to build and execute mission applications and are DII COE level 6 compliant
(with a goal of level 7). The Application Framework provides reusable business
components and the business object interfaces that implement the mechanisms for

Roles and
ResponsibilitiesFrameworks

DII
COE

Application
Developer (AD)

Integration
Integrator: Interoperability specification

Integration
Framework

Developer (IFD)

Application
Framework

Integration
Framework

Applications

Infrastructure

Integration Services

Technical Services

 (Business Object Interfaces

 Reusable Business Components

/
)

 Cross-Business
 Interoperability

Development
AD: Application-unique services

AD or IFD: Common services,
based on TSG/ESG decision

GCSS-AF Application Framework Developer’s Guide, Version 2.3
Document No. PROJ-2000-GCSSAF-0371

13

communication among business components and should also be DII COE level 6
compliant (with a goal of level 7).

A Mission Application (MA) implemented using this Reference Architecture is composed
of pieces of each layer starting at the bottom, building the system by identifying and
using capabilities from each layer, in turn, to satisfy the system requirements.

The Roles and Responsibilities in Figure 2 - GCSS-AF Reference Architecture indicate
which portion of the Reference Architecture is being/will be developed by the Integration
Framework Developer (IFD), the Integrator, and the Applications Developer (AD). The
IFD is responsible for all aspects of the GCSS-AF IF. The Integrator is responsible for
the Interoperability Specification. The AD is responsible for all Application-unique
aspects. If there are Application-unique services that are required for Cross-Business
Interoperability, then the AD will develop that service. If there are common services in
the Cross-Business area, then the Technical Steering Group (TSG) and Executive
Steering Group (ESG) will decide on whether the IFD or AD will accomplish this
development.

3.1.1 Integration Framework (IF)
The IF provides the foundation and building blocks upon which all GCSS-AF
applications should be built. The availability of this foundation enables cost and
schedule savings through shared use of developed and documented facilities and
services and reduces the effort required to integrate modernized and newly developed
systems.

The IF is composed of the Infrastructure, Integration Services and Technical Services
Layers. The facilities and services provided by these layers are being centrally
developed and implemented for the Combat Support community as the GCSS-AF IF.
The current and future IF services are described in the Guide to Developing with the
GCSS-AF Integration Framework. A summary of these layers of the architecture is
provided below.

The lowest layer, Infrastructure, provides the Operating System (OS) and major
system level Commercial Off The Shelf (COTS) packages like the Database Engine.
This layer also contains the hardware, such as clients, servers, Local Area Network
(LAN)/Wide Area Network (WAN), network devices, and cabling.

Moving up to the next layer, Integration Services provides the communication
protocols and methods such as Common Object Request Broker Architecture (CORBA),
MOM or COM+ that are most often identified as Middleware.

The next layer is the Technical Services which provides distribution, presentation, data
and security as well as enterprise sys tem management services and facilities required
to enable the construction and operation of component based systems.

GCSS-AF Application Framework Developer’s Guide, Version 2.3
Document No. PROJ-2000-GCSSAF-0371

14

3.1.2 Application Framework
The Application Framework is composed of the Cross-Business Interoperability layer
and the Applications layer. A summary of these layers is provided below. The
capabilities of these layers are implemented via individual mission applications.

The Cross-Business Interoperability layer defines the cross business area and
business area specific functional components and the associated data model. Business
areas such as financial, logistics, personnel and medical are represented here. This
level also defines and implements the rules for communications, interoperability
capabilities and constraints among the Business Components within the architecture.

Finally, the Applications layer contains the typically coarse-grained Business
Components, which implement the business logic that is specific and unique to the
functionality being provided to the user. These components implement what is not
available in any other layer. These components must also be DII COE compliant. This
layer also encompasses the development tools required to construct and assemble
components.

GCSS-AF Application Framework Developer’s Guide, Version 2.3
Document No. PROJ-2000-GCSSAF-0371

15

4. GCSS-AF Spiral Lifecycle Phases
Models are complete abstractions of systems or contexts. Models are blueprints of
systems used for system construction and renovation. They are used to understand
and manage complexity within systems and are used for communication and assurance
of architectural soundness. A UML model is a representation of the problem domain
and system software. Each model contains views, diagrams, and specifications to
visualize and manipulate the elements in them.

To represent GCSS-AF in model form, a lifecycle has been identified for each spiral
development within GCSS-AF. The five phases of that lifecycle, which are named after
the UML models produced in each phase, and their associated developers are:

• Business Model (GCSS-AF Integrator) - the model of the Application’s Business
Activities

• Analysis Model (GCSS-AF Integrator) - the model of the Application’s Enterprise
Architecture at the Business Object level.

• Design Model (Application Developer) - the model of the Application’s Internal
Architecture and components.

• Implementation Model (Application Developer) - the model of the actual executable
components that compose the application.

• Deployment Model (GCSS-AF Integrator and Application Developer) - the model of
the application components laid down on the hardware that processes the
components.

The GCSS-AF Integrator is responsible for the Business Model, the Analysis Model
and a portion of the Deployment Model. The Application Developer is wholly
responsible for the Design and Implementation Models and associated phase
activities for his Application spiral. The Application Developer also shares
responsibilities with the Integrator for the Deployment Model and phase activity.
Figure 3 - Application Developer and Integrator Roles depicts this division of
responsibilities.

GCSS-AF Application Framework Developer’s Guide, Version 2.3
Document No. PROJ-2000-GCSSAF-0371

16

Figure 3 - Application Developer and Integrator Roles

Currently the tool used to develop and maintain the GCSS-AF UML imposes some
structural restrictions on how the UML is built. There are four views that are mandated.
These four views are the Use Case View, the Logical View, the Component View and
the Deployment View. The five lifecycle models are composed within these views.

1) The Business Model is composed in the Use Case View and the Logical View.
The Use Case View contains Business Activities captured as Mission Scenarios
(overriding missions) and Use Cases (steps) that make up a Business Activity. The
Logical View contains a UML Package called Business Model where Activity
Diagrams that graphically represent the Business Activities from the Use Case View
are captured.

2) The Analysis Model is composed in the Logical View. A UML Package called
Analysis Model in the Logical View captures the Collaboration Diagrams that realize
the Business Activities previously captured in the Business Model.

3) The Design Model is composed in the Logical View and the Component View. A
UML Package called Design Model in the Logical View captures the Sequence Flow

Application Developer and Integrator Roles

 Associated Documentation
• System Requirements Specification
• Architecture Overview and Description
• Application Framework Developer’s Guide
• Guide to Developing with the Integration
Framework

Business Model

Implementation Model

Deployment Model

Design Model

Analysis Model

Operational
Architecture

System
Architecture

Physical
Version Release

Component
Implementation

Component
Design

LM

Application Developer

LM and Application Developer

Roles

GCSS-AF Application Framework Developer’s Guide, Version 2.3
Document No. PROJ-2000-GCSSAF-0371

17

Diagrams that realize the Collaboration Diagrams previously captured in the
Analysis Model. In the Component View, the Design Objects used in the Logical
View Design Model package are grouped into Components in anticipation of
Deployment.

4) The Implementation Model is composed in the Logical View and the Component
View. A UML Package called Implementation Model in the Logical View reverse
engineers the code that realizes the Sequence Flow Diagrams of the Design Model.
During the reverse engineering the Component View is populated with the actual
Component Packaging of the developmental and non-developmental items.

5) Finally Deployment Model is composed in a single Deployment View for the whole
of GCSS-AF (restriction of the tool). Here Components are allocated to the
processors they run on.

Within each lifecycle phase GCSS-AF software is structured following the Layer System
View and is divided into two framework layers: Application Framework and Integration
Framework. The Application Framework Layer consists of the Application Business
Components following primarily the OAG component Structure. These Application
Business Components can be found in the Application Package. The Integration
Framework Layer forms the underlying foundation and is primarily found in the
Integration Framework Package. The Application Framework invokes the Integration
Layer through defined Application Program Interfaces (APIs) that follow industry
standards, where possible. Within the Integration Layer, the full set of Open System
Interconnection (OSI) layers (below the Application Layer) is represented; but those
layers are encapsulated within the Integration Layer.

Throughout the Rational Rose model, color coding of artifacts is used to identify the
Lifecycle phase in which the artifacts are resident. The output diagram contains this
color coding. For example, artifacts take the color of the atomic artifact furthest along in
the Lifecycle. Atomic artifacts change color when they enter a phase.

The following sections will describe each of the five phases and detail the activities of
an Application Developer as they employ the capabilities of the GCSS-AF IF during the
Design, Implementation and Deployment phases.

4.1 Business Model
The Business Model identifies key data, roles, and behavioral requirements to be
considered in the Analysis phase.

During the Business Model phase, the Integrator will either create all of the required
high level Business Model artifacts or update the existing Business Model artifacts,
depending upon whether the spiral under development is an early spiral or a later one.
This is accomplished through the Integrator working with the customer in composing
use cases, creating User Requirements, and creating Activity Diagrams. In addition, the
Customer defined Business Metrics are mapped by the Integrator to the GCSS-AF

GCSS-AF Application Framework Developer’s Guide, Version 2.3
Document No. PROJ-2000-GCSSAF-0371

18

Business Metrics. The Business Metrics are used to prioritize spirals and commit to
improvements through spiral implementations.

4.2 Analysis Model
In the Analysis phase, the necessary activities and resources are planned, the features
are specified, and the architecture is designed in order to carry out the behavior
captured in the Business Model.

The GCSS-AF Integrator will identify that portion of the Analysis Model that pertains to
the current or next spiral. This Analysis Model shall include the identification of GCSS-
AF artifacts required for the spiral under consideration. As the application unique
business components are analyzed, the interfaces needed by the business components
shall be specified in either Interface Definition Language (IDL) or via the OAGIS
Application Messaging Interface (AMI) (e.g., Extensible Markup Language (XML),
Document Type Definition (DTD)). In addition, all semantics and performance
characteristics of the interface shall be captured as well. This interface information is
captured in the GCSS-AF Interface Repository. User Requirements from the Business
Model are normalized. The normalized requirements are allocated to the Business
Components (see Application Framework Standards Section 5 for discussion of
Business Components) and Integration Framework Components. The allocated
requirements are collected into the Program System Requirements Specification (SRS).
Use Cases and associated System Requirements are allocated to the next increment to
be designed. All these work products are provided to the Application Developer as the
application unique Architecture Description.

4.3 Design Model
In the Design Model phase, how the system will be realized in the implementation
phase is described.

The Application Developer shall design each spiral to meet the Program System
Requirements Specification (SRS) requirements. The Architecture Description shall be
the basis from which the Application Developer shall design the application.

Deliveries from the Design Model phase are dependent on the processes the
Application Developer follows and the needs of the Government. At a minimum, the
deliveries should include a UML model with Sequence Flow Diagrams realizing the
allocated Use Cases and System Requirements.

At the end of the Design Model phase, the Application Developer shall deliver the UML
design model.

GCSS-AF Application Framework Developer’s Guide, Version 2.3
Document No. PROJ-2000-GCSSAF-0371

19

4.3.1 Introduction

The Unified Software Development Process by Ivar Jacobson, Grady Booch, and
James Rumbaugh defines the design model as:

 “an object model that describes the physical realization of use cases by focusing
on how functional and nonfunctional requirements, together with other
constraints related to the implementation environment, impact the system under
consideration. In addition, the design model serves as an abstraction of the
system’s implementation and is thereby used as an essential input to activities in
implementation.”

The design model, when complete, is used as a blueprint for the implementation of the
system. That is, the design model takes the generic analysis model and describes the
specific implementation.

The design model contains the definition and description of design classes that will
ultimately be included in the implementation of the system. The design classes specify
the attributes, operations, and parameters that will be included as a part of the
implementation.

In the design model the flow-of-events is depicted with the use of sequence diagrams.

The interaction of the application being developed with the IF is shown in both the class
and sequence diagrams in this model.

4.3.2 GCSS-AF Design Requirements

The following sections discuss the various design elements that the application
developer must take into consideration when developing the design model.

4.3.2.1 Design Modeling of Business Components

The design model provides the details of the application specific business logic. This
effort will produce a description, at a minimum, of the following:

• Exposed Application APIs: The application must define what APIs are provided for
use by other components. The service or function provided is defined during the
use case and scenario development and characterized in the class modeling. The
resulting interfaces are documented in Interface Definition Language (IDL).

GCSS-AF Application Framework Developer’s Guide, Version 2.3
Document No. PROJ-2000-GCSSAF-0371

20

• Definition of the Business Service Requests (BSRs): The application must define
what BSRs are produced and consumed by the application. The decomposition of
the Business Object Document (BOD) associated with a BSR is presented in the
class diagrams. The use of the BSR is depicted in the sequence diagrams.

• Use of IF Provided APIs: The APIs for the services and capabilities provided by the
IF that are used by the application are specified. This would typically be
accomplished through the use of sequence diagrams in the modeling tool.

The data to be managed by the application must also be modeled. If the application is
not very data intensive this may be done in the UML modeling tool. If the application is
data intensive this should be performed with the aid of a data-modeling tool, such as
ERWin. A data-modeling tool might also be used if the application is generating objects
from an existing database. Currently the only instance in the IF where XML is used is in
the representation of the BODs. In the future this may be extended to represent
application-managed data as well.

4.3.2.2 GCSS-AF Architecture Requirements

There are a set of guidelines defined for use by the application developer that discuss
when and how various types of components should be used (i.e. servlets, Enterprise
JavaBeans, and CORBA components.) The details of these guidelines can be found in
the Guide to Developing with the GCSS-AF Integration Framework.

In addition to following these guidelines, there are several other issues that must be
taken into consideration. These issues include expandability, portability, and reuse.

Depending on the nature of the application being developed, it may be necessary to
expand the system in the future to accommodate a higher number of users. If this is a
possibility, the application developer must address how this might be accomplished.

4.4 Implementation Model
In Construction and Assembly, new components are constructed and existing
components are assembled into the delivered application. The delivered application is
then reverse engineered populating the Construction and Assembly package and the
Component View with the actual components of the application. The Construction and
Assembly package and actual Component View are then reconciled with the Design
package and the previously specified Component View from the Design Model.

In the test phase, the entire system is verified.

Deliveries from the Implementation Model phase are dependent on the processes the
Application Developer follows and the needs of the Government. At a minimum, the

GCSS-AF Application Framework Developer’s Guide, Version 2.3
Document No. PROJ-2000-GCSSAF-0371

21

deliveries should include a UML model with Components realizing the Design Model
allocated to processors in the preliminary Deployment Model.

The Application Developer shall implement each spiral to meet the Program SRS
requirements. The Application Developer shall work with the Integrator to ensure the
necessary Integration Framework components are made available for reuse. The
Integrator shall provide these components and ensure that these components are
compliant with the DII COE. At the end of the Implementation phase, the Application
Developer will deliver:

1. UML Implementation Model

2. UML Deployment Model (preliminary)

3. Validated and Verified GCSS-AF Compliant application

4.4.1 Introduction
The primary purpose of the implementation model is to describe how the elements in
the design model are to be implemented as components. The implementation model
also describes how the components will be organized based on the implementation
environment, the programming language to be used, how the components depend on
each other, and what services provided by the IF will be utilized by this application. The
model is represented as a hierarchy of implementation subsystems containing
components, interfaces, and lower-level subsystems.

The implementation model contains the definition of additional classes and components
not previously defined in the design model. An example of this type of class or
component would be one that may be required in order to tie the application being
developed to some service provided by the IF. This might be something as simple as a
wrapper used to do the translation necessary when integrating components written in
two different languages.

The implementation model may also contain the definition and description of stubs that
can be used to develop or test components in the application. The stubs may represent
an interface to another system, or any other type of external contributor to the
application.

4.4.2 What is Provided by the Integration Framework
The artifacts that are provided by the Integration Framework (IF) that aid in the
development of the implementation model are described in the Guide to Developing
with the GCSS-AF Integration Framework. That document describes the IF content by
giving a brief description of the services and facilities available in the IF, as well as,
provides design guidance for GCSS-AF Applications using the IF. For more detailed
information regarding the IF, the Application developer must access the GCSS-AF
Systems Solutions UML Model.

GCSS-AF Application Framework Developer’s Guide, Version 2.3
Document No. PROJ-2000-GCSSAF-0371

22

4.5 Deployment Model
Mission Applications have various requirements associated with their deployment.
The GCSS-AF IF has been designed to be scalable to support these various
requirements. This scalability allows for patterns of Mission Application deployment.

4.5.1 Introduction
The Application Developer shall work with the Integrator, the Customer and the System
Program Office (SPO) in the actual implementation of the capability for the Customer
(i.e.. the Deployment). Compliance Test shall be conducted and Compliance Status
shall be verified. In addition, all Stewarded and Received interfaces shall be
incorporated into the Interface Repository, such that they are available to personnel
associated with GCSS-AF. Finally, the Models shall be validated. If there are problems
identified, the problem source shall be identified by the Integrator. Based on the
problem source, the problem will be assigned the appropriate owner to work the
problem to closure.

At the end of the Deployment Model phase, the final UML Deployment Model will be
complete.

4.5.2 Deployment patterns

Deployment patterns are common approaches to categorize deployments. They cover
such things as deploying a ported multi-echelon Mission Application or a new theater
only Mission Application. The purpose of the IF Deployment Patterns is to provide the
Application Developer with a concept of the various possible ways in which to deploy
their Mission Application in conjunction with the IF capabilities. During the Analysis and
Design Phases of the Application Development, the Integrator and Application
Developer need to decide how the Mission Application is to be deployed. To assist in
this decision process, the Integrator and Developer will reference the pre-existing
Deployment Patterns contained in the UML Model.

These Deployment Patterns will depict the distribution of functionality across the
enterprise (e.g. Base, MajCom, Headquarters, Air Force Wide).

Because the development of the IF is ongoing, these Deployment Patterns will not be
available until after the release of the GCSS-AF UML Model for the IF Version 2.0.
Additionally, many Operations and Support issues need to be considered in conjunction
with the Deployment. Currently deployment and Operations and Support of the
Integration Framework still need to be addressed.

GCSS-AF Application Framework Developer’s Guide, Version 2.3
Document No. PROJ-2000-GCSSAF-0371

23

5. Application Framework Standards
In terms of standards that apply to GCSS-AF, the Business Component Framework is
based upon the Open Applications Group (OAG) standards. In addition, the technical
components of the Integration Framework utilize CORBA, OAMAS and other standards
as documented in the Guide to Developing with the GCSS-AF Integration Framework.
The Referenced Documents section of this document lists the government documents,
applicable standards and contractor documents that are pertinent to Business Object
development.

5.1 The Open Applications Group (OAG)
The tenants of the Application Framework are based upon the Open Applications Group
(OAG) integration concepts. The OAG is a non-profit, vendor centric, consortium
comprised of enterprise application software developers. The purpose of the OAG is to
create Open Applications Integration by establishing and publishing specifications to
enable business object integration across the enterprise. Their focus is on the concept
of a Business Object Document (BOD) and its associated business processes used to
exchange data between business components. Currently, there are two specifications
within the OAG:

• Business – Open Applications Group Integration Specification (OAGIS)

• Technical – Open Applications Group Common Middleware API Specification
(OAMAS)

The OAGIS is focused on the analysis of business processes via the concept of
integration scenarios. This specification provides the concepts associated with
categorizing business components, the associated integration scenarios between
business components, and the grouping and format of the business data, which is
transferred between the components (the Business Object Document).

To address the need for a common mechanism to transmit the data between business
components, independent of the format of the data, the OAG specified the Open
Applications Group Common Middleware API Specification (OAMAS). This
specification is an attempt to have Middleware manufacturers develop their APIs in a
consistent format.

Additional information about the OAG, as well as the OAGIS and OAMAS may be
obtained from the OAG Worldwide Web site at www.openapplications.org.

5.1.1 The Open Applications Group Integration Specification (OAGIS)
Componentization enables integration of “best of breed” practices from commercial
products by enabling standardized interfaces to new products and a wrapping of
existing products. It essentially specifies a framework for "plug-and-play" Business
Logic. This concept is exemplified in the OAG’s OAGIS where a consortium of

GCSS-AF Application Framework Developer’s Guide, Version 2.3
Document No. PROJ-2000-GCSSAF-0371

24

enterprise application software developers has formed to develop a standard way of
interfacing business applications. Componentization is an integration-based philosophy
and OAGIS is a key mechanism for standardization and interoperability.

Componentization (as defined by OAG) - the process of breaking
down business applications into functional components that have
tangible points of integration to other components. (see Figure 4 -
OAG Componentized Business Process)

Note: The OAG Component is equivalent to a GCSS-AF Business
Object

Figure 4 OAG Componentized Business Process

The focus of OAGIS is the real need for interoperability at the business process level
and the potential benefits for customers of being able to mix and match all OAGIS -
compliant solutions to address their specific requirements. When users want to
purchase business applications from multiple vendors, they have the difficult task o f
getting the business applications to work together without the benefit of controlling the
integration of those business applications. In addition, customers are struggling with the
even larger task of integrating all of their systems into a coherent information technology

Inventory

Invoicing

General
Ledger

Order
Mgt

Pricing

Accounts
Receivable

Cost

GCSS-AF Application Framework Developer’s Guide, Version 2.3
Document No. PROJ-2000-GCSSAF-0371

25

infrastructure to support their business. This approach enforces the discipline required
to logically componentize enterprise applications into standardized function and data,
thus promoting integration.

Through OAGIS, application integration can be optimized for all, instead of having
different costly solutions for each user. The benefits are realized from both the
customer’s and the software vendor’s perspective.

The OAGIS facilitates the interoperability of business components by defining the
concept of a Business Service Request (BSR) between two or more business
components. The message passed as a result of the BSR is the Business Object
Document (BOD). The Business Object Document is the model used to communicate a
request from the originating business application to the destination business application.
Each Business Object Document includes supporting details to enable the destination
business application to accomplish the action. The BOD has a specified format for each
of the BSRs. (see Figure 5 OAGIS Integration Scenario)

Figure 5 OAGIS Integration Scenario

OAGIS Integration Scenario

Plant Data Collection
Warehouse Management - Cycle Counts

Inventory Get Countinfo

Show Countinfo

Plant Data
Collection

Update Invencount

Getlist Countinfo

List Countinfo

Business Application
(Component)

Business Application
(Component)Business Service

Requests

GCSS-AF Application Framework Developer’s Guide, Version 2.3
Document No. PROJ-2000-GCSSAF-0371

26

6. Componentization
It is important that the reader have a clear understanding of what is meant by
componentization and what the characteristics of a component are.

When reading the available literature today and asking prominent authors in the field, it
becomes apparent that many definitions for components exists today. Therefore, it is
important to define what a component is within the GCSS-AF paradigm and to delineate
the properties of components. The component definition used is an adaptation of the
definition provided in Component Software Beyond Object-Oriented Programming.
Within this document the terms component and software component are used
interchangeably.

6.1 Component Definition
A software component is a unit of composition with contractually specified interfaces
and explicit context dependencies only. A software component can be deployed
independently, is self-contained, and is sufficiently specified to be useable by third
parties.

The unit of composition for a component is defined by the content of a component and
the results of analysis of the factors that contribute to the definition of the component.
The contents of a component may include class libraries (C++, Java, 4GL);
encapsulated software modules (ActiveX controls, JavaBeans, Enterprise JavaBeans,
CORBA services); framework environments (OAG’s OAMAS, IBM’s San Francisco);
CASE models; and pre-built (COTS, Legacy) applications. The following major factors
need to be considered in determining the size or granularity of a component:

• Abstraction – The level of abstraction desired for the functionality within a
component contributes to the sizing of the component. If the methods used to
implement an interface are not of interest to developers, they should be hidden
internally within the component. However, if the methods are of interest to
developers, they may be candidates as separate components, or they may be
exposed as additional interfaces of the component. In the object-oriented
environment, a class would define the minimum component size.

• Accounting – Since components are the unit of deployment in a system, they
become the unit of accounting for the system. In systems where monitoring and
tracking of resource utilization is required, considerations for component size are
important. If there are many fine-grained components exposed to the Middleware
versus bound within coarse-grained components, the overhead of tracking can be
prohibitive. If the components are too coarse-grained, accurate tracking can not be
accommodated. Also, the resources required by the component may exceed the
capacity of the system.

• Coupling – The degree of coupling desired between exposed interfaces is another
determinant of object granularity. For loosely coupled components within a system,

GCSS-AF Application Framework Developer’s Guide, Version 2.3
Document No. PROJ-2000-GCSSAF-0371

27

the context dependencies need to be minimized to the extent feasible. For large
complex systems, the system should be partitioned into separately bounded units
for analysis. This bounding defines the granularity of components that can be
loosely coupled.

• Compilation – Components are the upper limit of a compilation unit since a
component has the property of independent deployment. Setting the compilation
limit to the component provides the best global optimization opportunities.
However, a trade off needs to be made at compilation time before picking the
component as the level of compilation. It may be better to choose classes or
modules within a component as the compilation unit.

• Delivery – This refers to the unit of delivery for deployment. The complexity of
documenting and the cost of administering components for delivery need to be
considered when determining the granularity of components. Training efforts need
to be considered in this area as well.

• Exception Handling – Ideally, a component handles all of the exceptions within its
scope. This requirement affects the size of the component since it may need
additional services to handle the exceptions. Also, if there are exceptions not
handled within the component, they must be part of the interface definition and the
post conditions that are specified for the component.

• Fault Containment – Another consideration for component sizing is the need to
support fault tolerance and the need to contain the impacts of faults. This typically
requires that physical (e.g., redundant systems with voting, alternate network
paths) or temporal (e.g., rollback and recovery, guaranteed delivery) fault tolerance
must be provided. The boundaries of fault tolerance may provide insight to the
granularity required for components.

• Loading – The context dependencies of a component determine the loading
implications for a component. An effect of component loading with context
dependencies is the need for dynamic linking facilities and version checking
capabilities. If the context dependencies are not met, the component cannot be
loaded. Therefore, if a component is truly independent, the loading issues are
simplified and the risk of failure at load time is reduced.

• Locality – The distribution requirements of a system composed from components is
a major factor to be considered in determining the granularity. Since a component
must be loaded as a complete unit, the services provided within the component will
reside on a single resource. If there is tight coupling with other components that
can not reside on the same resource in a networked environment, significant
performance issues may result. Also, it may be desirable to have fine-grained
components for services that are provided for many components so that they may
be replicated without causing the consumption of large resources.

• Maintenance – The stability of the services provided by a component are another
consideration for sizing. It is desirable to minimize the impact on a system from

GCSS-AF Application Framework Developer’s Guide, Version 2.3
Document No. PROJ-2000-GCSSAF-0371

28

changes due to errors, changing implementations or extending capabilities. The
ability to localize these effects to a minimum number of components of small size is
important for supporting electronic distribution of updates. Also, the number of
components to be maintained impacts the configuration management and
administration effort involved for the system.

A component is also defined by contractually specified interfaces. These interfaces, or
signature, define the methods or procedures, data variables and invariance,
preconditions and post conditions associated with a component’s access points. The
contract between a component’s provider and the user may also include non-functional
commitments (e.g., performance, size, and environment). The interface is defined using
IDL (Interface Definition Language). The semantics of the IDL are converted for the
technology (i.e., CORBA, ActiveX or COM) used for implementation. Preconditions
define the conditions that must be met prior to calling the provider’s interface.
Preconditions also define the configurable attributes that must be defined as part of the
instantiation of the component. Post conditions define the implementation that the
provider must meet prior to returning control to the caller of the component. Additional
features of a component that may be discovered during use can not be utilized without a
modification of the contract since changes outside of the contract may occur when
addressing non-functional enhancements.

Explicit context dependencies define the resources and environment that the
component relies on being available. These context dependencies may include other
components, operating systems, platforms, or Middleware technologies (e.g., CORBA,
MOM, or COM+).

6.2 Component Properties/Attributes
There are many properties and attributes that can be associated with components. The
major properties required of components are:

• Independent Deployment – The component must be well separated from its
environment and from other components. The component encapsulates its
constituent parts. A component can not be partially deployed.

• Self-contained – A component needs to encapsulate its implementation and
interact with its environment only through well-defined interfaces.

• Useable by Third Parties – A component cannot require a third party to have
knowledge of its implementation to utilize it in the composition of a system. The
interfaces and context dependencies, available to the third party for system
assembly or composition, provide sufficient and complete information to support the
composition of a system.

• Persistent State - Prior to loading, a component cannot have a persistent state. A
component may have configurable parameters that are specified as part of the

GCSS-AF Application Framework Developer’s Guide, Version 2.3
Document No. PROJ-2000-GCSSAF-0371

29

loading process to give it persistence. The loading or instantiation is accomplished
through the CORBA factory, Java constructor, or CORBA servant. The resulting
instance of a component within an executing system has a persistent state and is
identified as an ‘object’. An example would be a Budget Component which when
instanstiated could have a state designating it the Budget for a Base or the Budget
for a MajCom. Prior to instantiation there would be no indication of this.

• Introspection - Introspection is the capability to customize and configure a
component during assembly and the capability to dynamically discover and invoke
component capabilities at runtime. Static information about the component is
provided through the IDL definition of the interfaces and context dependencies.
Although component technology specifications support the dynamic invocation of
components at run time based on key parameters, there are currently no practical
implementations of this capability that scale for large complex systems. Therefore,
for the near future, the specification of components to execute will be static. The
selection of the component will be performed as part of the component assembly
process for a system by examining the component interfaces defined through the
IDL. However, the location of the actual component may be dynamic and managed
through the ORB.

• Immutable Interfaces - Once interfaces are contracted and a baseline established,
they shall not change. If existing interfaces to a component require change, a new
component and new component name must be defined. This addresses the need to
protect the fielded components in a large complex system from failure due to
interface changes. A decision needs to be made at fielding whether or not the old
component is to be maintained. When a component is extended (e.g., adding a
new interface) without changing the existing interfaces, only the version (see
Versioning) needs to change.

• Versioning - Component versions shall be part of their interfaces. As part of the
loading process for components, the version number is made available for
determining if a particular component is to be loaded. Version numbers for a
component change whenever a component’s interface is extended or its
implementation changes. Since implementation changes may impact performance,
it may be necessary to specify a specific version of a component when loading.

• Extensibility – Extensions to components at any layer of the architecture are
possible as long as they utilize components from the next lower layer of the
architecture. For example, during business component construction (see The Open
Applications Group (OAG) Section 5.1) in the Application Framework layer, existing
components defined in the Integration Framework layer must be utilized to provide
services for new business components. If a necessary capability is not available in
the integration framework layer, it must be created before the new business
component can be constructed. For example, if a business component requires a
new presentation service that is not available in the integration framework layer, that
capability must be added to the integration framework layer presentation services

GCSS-AF Application Framework Developer’s Guide, Version 2.3
Document No. PROJ-2000-GCSSAF-0371

30

prior to being used in the business component. The interfaces of the internal
components will not be available to users of the new component unless their
interfaces are defined as part of the new component’s external interfaces.

• Externalization (Serialization) – The business component interfaces only contain
serial streams of information – no objects. This requires that objects within the
business component must serialize and de-serialize their interfaces that are also
external interfaces to the business component.

Note: The OAMAS standard requires that all business interfaces be serialized. This
is required since the Middleware technologies may not support non-serialized
interfaces and non Object-Oriented (O-O) interfaces only support serialized
interfaces.

Additional attributes that further define a component within GCSS-AF are:

• Object-Orientation. The previous properties defined for a component identify the
need that components, at a minimum, perform encapsulation. However, the
remaining properties of O-O, namely polymorphism and inheritance, are not
mandatory. Since the target architecture is object-oriented, it is highly desirable that
all of the O-O properties be utilized. However, during the transition and as long as
legacy systems are included, all components will not be true O-O implementations.
Since components are not necessarily executable (e.g., class library), this attribute
may not be applicable.

• Granularity. Within the component environment, it is common to discuss the
granularity, or size, of components. Fine-grained components are small in size and
have applicability across a wide range of application types. Coarse-grained
components are typically large in size and more limited in their applicability. These
coarse-grained components are more closely related to a server-centric
implementation of an organizational business model.

• Reuse Level. Components may be reusable at the source code, binary code, or
specification level to create new components or new versions of existing
components.

6.3 Component Based Development Process
The Component-Based Development Process (CBD) describes the creation and
deployment of software-intensive systems assembled from components. These
components may be newly developed components, reusable components available
from previous development efforts, and/or Commercial-off-the-Shelf (COTS) /
Government-off-the-Shelf (GOTS) products that provide the required functionality and
are compliant with the GCSS-AF System Architecture Framework. CBD partitions
software development into three phases: Modeling, Construction and Assembly.

GCSS-AF Application Framework Developer’s Guide, Version 2.3
Document No. PROJ-2000-GCSSAF-0371

31

Figure 6 - Component Development Simplified Flow

While GCSS-AF does not specify how these phases are to be performed, it is expected
that sound software engineering principles and practices will be followed throughout the
process. GCSS-AF does, however, require certain development artifacts to be produced
to support integration assessment of the Mission Application and its components.
These artifacts are defined in the documentation defining the integrator’s role.

Figure 6 - Component Development Simplified Flow provides a very simplified view of
the relationships of the phases of component development. It is important to note that
component-based development, like any modern development, is intended to be used
in an incremental and spiral fashion. Once components are constructed, instances can
be assembled to produce multiple and different applications.

Modeling Construction Assembly

Analysis
Model(s)

Design
Model(s)

Implement
Model(s)

Deployed
Applications

Business
Model(s)

GCSS-AF Application Framework Developer’s Guide, Version 2.3
Document No. PROJ-2000-GCSSAF-0371

32

7. Use of the Integration Framework

7.1 Application Framework Developmental Components
The Application Developer is expected to develop his Mission Application upon the
GCSS-AF Integration Framework. Additional detail regarding the approach to
developing with the Integration Framework and the capabilities provided by the
Integration Framework can be obtained from the Guide to Developing with the GCSS-
AF Integration Framework.

7.2 Application Framework Non-Developmental Components (COTS,
GOTS, and Legacy Systems)

When using a non-developmental item to provide some Application Framework
functionality, a wrapping of the Legacy System, GOTS, or COTS product should be
applied. This wrapping makes the non-developmental item a GCSS_AF non-
developmental component. The non-developmental component appears to the rest of
GCSS-AF as a GCSS-AF component.

Wrapping provides a mechanism for integrating non-developmental items that are
candidates for components into a component based software architecture. Wrapping
techniques provide a natural way of integrating non-developmental items with each
other and with new software. Wrapping provides access to non-developmental items
through an encapsulation layer. The encapsulation exposes only those attributes and
operations desired by the software architect. The wrapper serves as an interoperability
bridge between a non-developmental item and the software architecture. On one side
of the bridge, the wrapper communicates using the non-developmental items’ existing
communication facilities. On the other side of the bridge, the wrapper presents external
components a clean interface that provides abstract services.

The purpose of component wrappers can be understood best in the context of
architecture-based systems integration. At the architecture level, a wrapper needs to be
more than just a simple encapsulation layer. The wrapper must implement the
architecture design in all aspects. The wrapper provides interoperability between the
architecture and the non-developmental items. It also should provide value-added
functions and information, such as metadata, data conversions, and other architecture
features.

Approaches to consider for component wrapping include:

Encapsulation - Encapsulation is the most general form of wrapping. It is the
separation of interfaces from implementation. Encapsulation can be used to partition a
non-developmental items into one or more components. Each component can be
encapsulated separately, and then the system can be reintegrated using object-based
communications.

GCSS-AF Application Framework Developer’s Guide, Version 2.3
Document No. PROJ-2000-GCSSAF-0371

33

Layering - A layer provides a mapping from one form of application program interface
to another. Layering is used in the GCSS-AF Component Architecture to map between
the OAGIS standard-based BSR/BOD APIs and legacy or externa l systems

Data Migration - Many legacy systems and GOTS revolve around large amounts of
data. Such systems may be migrated or wrapped. Migration involves moving the data
to another data model. Wrapping involves adding layering code to provide access to
the legacy database.

Middleware - The term Middleware encompasses a wide range of commercial system
integration software. Middleware software service components can extract information
from business applications, databases, or legacy systems and transform that
information to standard formats. Middleware can provide a mechanism for data to get
from place to place; manage application logic and resources; or directly support
significant application functionality.

Table 1 - Wrapping Enhancements depicts ways wrapping can change a component’s
interface.

Table 1 - Wrapping Enhancements

Before Wrapping After Wrapping

Unique API Desired API

Unique access mechanism Uniform access mechanism

Non-exchangeable data format Exchangeable data format

Limited metadata Complete/uniform metadata

Inadequate interoperability Meets Interoperability Needs

System-component independence

Limited/proprietary security and

Management interfaces

Uniform/comprehensive security

and management interfaces

Figure 7 - Legacy Interface and Wrapping, illustrates the architectural approach for
communicating between Business Components; wrapping COTS and GOTS
applications to form Business Components; and implementing a Legacy Interface type

GCSS-AF Application Framework Developer’s Guide, Version 2.3
Document No. PROJ-2000-GCSSAF-0371

34

of Business Component that provides the interface between GCSS-AF Business
Components and existing Legacy or External systems.

Figure 7 - Legacy Interface and Wrapping

When integrating existing COTS or GOTS applications into the GCSS-AF System
Architecture, a wrapper is required unless the application directly supports OAGIS BSR
defined interfaces through OAMAS. The resulting Business Component supports the
standard communications between components and only exposes the methods that are
required from the COTS or GOTS application to support GCSS-AF requirements. Once
a Legacy application or COTS/GOTS application is wrapped to create a Business
Component, all of the rules associated with interfacing to a component apply.

20 Nov 98

MA 1 Business
Component

OAMAS

MA “n” Business
Component

OAMAS

System A
COTS, GOTS
Application

A
P
I

Mapping

O
A
M
A
S

BSRs,
BODs

System A Wrapper

O
A
M
A
S

L
e
g
a
c
y

I
D
S

Files,
Transactions,

 etc.

Legacy
SystemBSRs,

BODs

Legacy Interface

Persistent
Store

Mapping

GCSS-AF Application Framework Developer’s Guide, Version 2.3
Document No. PROJ-2000-GCSSAF-0371

35

8. Application Validation and Integration
An Application Architecture Description set of work products shall be created specifically
for the application and is the prime delivery of the Analysis Model (see Analysis Model
Section 4.2). That set of work products will be the basis from which the Application
Developer shall design and implement the component(s) that they are responsible for
developing.

In performing development activities as part of GCSS-AF, the application developer is
involved in two levels of validation and integration. First, the developer is totally
responsible for ensuring that the business components that are developed are
compatible with other business components required for their application and with the
GCSS-AF environment. The Application Developer shall establish procedures and
processes to accomplish this first level of validation and integration.

The second level of integration is accomplished after the developer, through the
application SPO, releases components for integration into the GCSS-AF architecture.
At this point, the Application Developer shall provide the documentation, test
procedures, and test results for the integrator to use during GCSS-AF integration and
test. GCSS-AF integration and test will consist of the integrator assessing GCSS-AF
compliance of the component(s), as referenced in Section 8.1 - GCSS-AF Compliance,
as well as ins talling and running the components in the GCSS-AF system. This second
level of integration and testing shall be performed to ensure the component(s) function
in the architecture without interfering with other systems within the enterprise.

8.1 GCSS-AF Compliance
The GCSS-AF Compliance Survey, when complete, will describe the two aspects of
GCSS-AF Compliance, Interoperability (Information Stewardship) and use of the GCSS-
AF Integration Framework.

GCSS-AF Application Framework Developer’s Guide, Version 2.3
Document No. PROJ-2000-GCSSAF-0371

36

9. Recommended Application Developer Tools

9.1 Integrated Development Environments

9.1.1 Visual Age for Java
Visual Age for Java is IBM's Java Integrated Development Environment (IDE). It
provides support for building and testing Java applets, servlets, and Enterprise
JavaBean components. This is the recommended IDE. Use of Visual Age for Java
automates the build of developed components with IBM WebSphere as well as supports
testing at the developers workstation in the WebSphere environment.

9.1.2 Visual Cafe
Visual Café from Symantec, provides a complete Java Integrated Development
Environment (IDE) for the heterogeneous enterprise. Use of Visual Café limits the use
of the complete set of capabilities provided by the IBM WebSphere product.

9.2 Modeling Tools
Models are complete abstractions of systems or contexts. Models are blueprints of
systems used for system construction and renovation. They are used to understand
and manage complexity within systems and are used for communication and assurance
or architectural soundness. Due to the rapid increase in the complexity of system
requirements, successful modeling is an essential task.

9.2.1 Unified Modeling Language
The Unified Modeling Language (UML) is a language that applies to modeling and
systems. It is used for specifying, visualizing, constructing and documenting systems
and the artifacts o f software intensive systems.

A UML model is a representation of the problem domain and system software. Each
model contains views, diagrams, and specifications to visualize and manipulate the
elements in them.

The Unified Modeling Language (UML) can be used for specifying, visualizing and
constructing the elements of software systems. It allows you to visualize, understand
and refine your requirements and architecture before committing them to code. The
UML ensures that large and complex systems can be modeled successfully.

GCSS-AF Application Framework Developer’s Guide, Version 2.3
Document No. PROJ-2000-GCSSAF-0371

37

9.2.1.1 Rational Rose

Rational Rose is an object-oriented analysis and design and construction tool providing
visual modeling, component-based development, and support for the Unified Modeling
Language (UML). This is the recommended Object-Oriented Analysis and Design
(OOA&D) modeling tool.

9.2.1.2 GCSS-AF Systems Solution UML Model

One of the primary artifacts developed for use by GCSS-AF developers is the GCSS-AF
Systems Solution UML Model. This model represents the GCSS-AF IF and is used to
document the services and facilities of the GCSS-AF IF. As mission applications are
modeled, those models will be incorporated into the GCSS-AF Systems Solution UML
Model.

The GCSS-AF Systems Solution UML Model describes the services and facilities that
are provided by the GCSS-AF IF. This model also contains examples of how
applications might use these services.

9.2.2 Data Modeling

9.2.2.1 IDEF1X

IDEF (Integrated Definition Method) was originally developed under the U.S. Air Force’s
Integrated Information Support System Project under the Integrated Computer Aided
Manufacturing program. IDEF1X is the data modeling component of IDEF. IDEF1X is a
language for specifying and defining data structures. It helps a developer consider
complex data structures and business rules without being overly concerned about the
management database that will be used to implement the system.

ERwin from PLATINUM is an IDEF1X database design tool recommended to help
design, generate, and maintain high-quality, high-performance database applications.

9.3 Class Libraries / Jar Files
There are a set of “jar” files and class libraries that are provided for the use of
applications that require the services or capabilities provided by the IF. For this
information, reference the Guide to Developing with the GCSS-AF Integration
Framework.

GCSS-AF Application Framework Developer’s Guide, Version 2.3
Document No. PROJ-2000-GCSSAF-0371

38

9.4 Code Templates Base Classes and Helper Classes
The IF provides a set of code templates and base classes that may be extended for the
specific use of the application. Based on the design of the application the developer will
choose a set of products to be used for the implementation. These products will include
the products specified by the IF as well as any additional product required for the unique
solution of the application. The selected products specified by the IF may have a set of
code templates and/or helper classes associated with them that would be used to guide
the development of the components of the application. An example of this would be
code templates and helper classes for integrating the application with the IBM
MQSeries product. The templates in this case provide a level of separation for the
application business logic from the infrastructure support. The templates are in skeleton
form and would be modified for specific use by the application. The helper classes
constitute the interface that application developers will use that makes the task of the
application developer simpler and removes the specifics of the product from the
interface. For this information, reference the Guide to Developing with the GCSS-AF
Integration Framework.

GCSS-AF Application Framework Developer’s Guide, Version 2.3
Document No. PROJ-2000-GCSSAF-0371

39

10. Future Direction

10.1 Concept
As GCSS-AF applications are developed, the GCSS-AF Integrator shall incorporate the
GCSS-AF compliant artifacts into a Unified Modeling Language (UML) repository. The
artifacts contained in this UML repository shall be available to application developers for
their use in designing and implementing their applications. Initially, the repository shall
contain few artifacts, but eventually there shall be a number of GCSS-AF compliant
artifacts that can be used.

In order to facilitate the use of the tool of the developer’s choice, the model shall be
published to the Web, utilizing a capability that is available in the Rational Rose suite,
such that it can be viewed without the need for a tool license. Application Developers
shall provide their updates to the model in UML, so that the new Business components
can be successfully integrated into the GCSS-AF Architecture Model. The developers
are free to use the UML modeling tool of their choice. One license for Rational Rose
shall be required by the developer, however, to capture the final version of the model
and ensure it can be successfully integrated with the GCSS-AF Architecture Model.

The initial view of the model that is available on the Web page shall contain
documentation that explains how to utilize the information that is being provided. This
will include how to navigate through the model. Also included shall be information on
recent changes that have been incorporated into the model. This shall be especially
important in cases where the developers are receiving a subsequent version of the
model and need to be aware of the differences from the version with which they were
previously working.

The frequency with which the model will be updated will vary depending upon the level
of development activity that is underway. On a monthly basis, the model shall be
updated, even if only for minor changes. If there has been no change activity to the
model in the last month, the developers will be notified that the model will not be
updated.

The model itself will provide information for managing the GCSS-AF Architecture Model
as well as information that describes and supports the model. This is the approach
currently being explored.

There shall also be a test suite identified that will be used to verify the adequacy of the
interfaces. The Application Developer shall develop a test suite and conduct testing to
verify DII COE compliance.

10.2 Implementation
The GCSS-AF Integrator shall define the use case threads for an application, which will
drive definition of the spiral. The version of the GCSS-AF Architecture Model that is
published to the Web shall include the information that is pertinent to the Business

GCSS-AF Application Framework Developer’s Guide, Version 2.3
Document No. PROJ-2000-GCSSAF-0371

40

Object(s) that the developer is responsible for. The Application Developer shall agree
to the Integrator’s definition. The provided information shall include the identification of
the elements of the existing architecture (i.e. Integration Framework) that the newly
developed Business Object(s) shall interface with and/or shall utilize as services. As
the components of the architecture are developed, the classes that are identified as part
of the process shall have operations associated with them. For each operation, there
shall be documentation captured in Interface Definition Language (IDL) UML, or XML
DTD notation that addresses the functionality performed by the operation, as well as
any input values needed by the operation, and the return value of the operation. This
information is the Application Program Interface (API). As the components of the
system are identified, the same type of information about how to interface with those
components must be specified. This is important information for the developer to know
from two perspectives. First, it tells the developer where to find the information that is
required in order to communicate with the existing components. Second, it indicates the
type of information the developer needs to provide in terms of the level of
documentation for the newly developed Business Object.

